Subsets of finite groups exhibiting additive regularity
نویسندگان
چکیده
In this article we aim to develop from first principles a theory of sum sets and partial sum sets, which are defined analogously to difference sets and partial difference sets. We obtain non-existence results and characterisations. In particular, we show that any sum set must exhibit higher-order regularity and that an abelian sum set is necessarily a reversible difference set. We next develop several general construction techniques under the hypothesis that the over-riding group contains a normal subgroup of order 2. Finally, by exploiting properties of dihedral groups and Frobenius groups, several infinite classes of sum sets and partial sum sets are introduced.
منابع مشابه
Moving Lemma for Additive Chow Groups and Applications
We study additive higher Chow groups with several modulus conditions. Apart from exhibiting the validity of all known results for the additive Chow groups with these modulus conditions, we prove the moving lemma for them: for a smooth projective variety X and a finite collection W of its locally closed algebraic subsets, every additive higher Chow cycle is congruent to an admissible cycle inter...
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملRemarks on Μ′′-measurable Sets: Regularity, Σ -smoothness, and Measurability
Let X be an arbitrary nonempty set and a lattice of subsets of X such that φ, X∈ . ( ) is the algebra generated by and ( ) denotes those nonnegative, finite, finitely additive measures μ on ( ). I( ) denotes the subset of ( ) of nontrivial zeroone valued measures. Associated with μ ∈ I( ) (or Iσ ( )) are the outer measures μ′ and μ′′ considered in detail. In addition, measurability conditions a...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملA relation between infinite subsets and exterior center in groups
Let G be a group. Neumann to answer a question of Paul Erdos proved that every infinite subset of G has two different comuting elements if and only if G is center-by-finite. In this paper, we deal with Erdoschr('39')s question in different aspect and we show that every infinite subset X of G has two different elements x and y such that x^y=1 if and only if the exterior center of G ihas finit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013