Subsets of finite groups exhibiting additive regularity

نویسندگان

  • Robert S. Coulter
  • Todd Gutekunst
چکیده

In this article we aim to develop from first principles a theory of sum sets and partial sum sets, which are defined analogously to difference sets and partial difference sets. We obtain non-existence results and characterisations. In particular, we show that any sum set must exhibit higher-order regularity and that an abelian sum set is necessarily a reversible difference set. We next develop several general construction techniques under the hypothesis that the over-riding group contains a normal subgroup of order 2. Finally, by exploiting properties of dihedral groups and Frobenius groups, several infinite classes of sum sets and partial sum sets are introduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Lemma for Additive Chow Groups and Applications

We study additive higher Chow groups with several modulus conditions. Apart from exhibiting the validity of all known results for the additive Chow groups with these modulus conditions, we prove the moving lemma for them: for a smooth projective variety X and a finite collection W of its locally closed algebraic subsets, every additive higher Chow cycle is congruent to an admissible cycle inter...

متن کامل

Maximal subsets of pairwise non-commuting elements of some finite p-groups

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...

متن کامل

Remarks on Μ′′-measurable Sets: Regularity, Σ -smoothness, and Measurability

Let X be an arbitrary nonempty set and a lattice of subsets of X such that φ, X∈ . ( ) is the algebra generated by and ( ) denotes those nonnegative, finite, finitely additive measures μ on ( ). I( ) denotes the subset of ( ) of nontrivial zeroone valued measures. Associated with μ ∈ I( ) (or Iσ ( )) are the outer measures μ′ and μ′′ considered in detail. In addition, measurability conditions a...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

A relation between infinite subsets and exterior center in groups

Let G be a group. Neumann to answer a question of Paul Erdos proved that every infinite subset of G has two different comuting elements  if and only if G is center-by-finite. In this paper, we deal with Erdoschr('39')s question in different aspect and we show that every infinite subset X of G has two different elements x and y such that x^y=1  if and only if the exterior  center of G ihas finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2013